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I. Introduction 
Statistics are an important element for guaranteeing the quality of any experiment using animals. 
The discipline provides instruments for determining the minimum number of animals you will need 
to demonstrate a given expected effect with enough strength of evidence (power analysis), as well as 
instruments for analysing the measurements (descriptive and inferential statistics), so that sound 
conclusions can be drawn. 

This usually makes statistics an essential element of responsible research that takes the 3 Rs into 
consideration. Although statistics cannot answer the question of whether a study is useful and/or 
ethically responsible, with the research question in mind, statistics can indeed contribute to an 
optimal research design.  

It is always a good idea to consult a statistician when setting up new research involving laboratory 
animals. Remember that a statistician him- or herself is usually not an expert in that field of research. 
The communication between the two of you will be an interaction between the knowledge of the 
researcher and that of the statistician, so it’s crucial that you have good information exchange. The 
final results will be in balance: a well-run, sound experiment and an optimal design that has already 
taken the final analyses into account, in which the research question and the welfare of the animals 
will always be the main elements.  

To streamline this interaction, this guide will briefly explain basic statistical terms. There are a few 
references for more information at the end. 

II. Key points to consider 
To properly set up and conduct an experiment using animals, and to analyse and present the results, 
there are various points to take into consideration, many of which are connected:  

1. What are the research questions? 
Make a distinction between primary and secondary research questions. 

2. What is the design of the experiment? 
Think about what you are going to measure, how you will measure it and what animals you need. 
Also, will be it a paired or unpaired design, how will you organise the randomisation and blinding, 
how will you analyse the data later, what practical elements are required, etc. 

3. How will the data be analysed? 
In other words, what is the statistical analysis plan? Think of what results you will want to 
describe, test or model; what hypotheses you intend to test; what statistical analyses you intend 
to use, whether you intend to do one or two-tailed tests, etc.  

4. What is the minimum number of animals you will need? 
Determine your sample size using the design and the statistical analysis plan, and think about 
whether it may result in any practical problems. If necessary, modify the design, statistical 
analysis plan or the power analysis.  

5. To what extent can you take the 3 R’s into consideration? 
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6. Are you prepared for unanticipated situations? 
What will you do with extreme measurements? What will you do if animals become ill or die? 
What will you do if you do not satisfy the requirements for the statistical analyses? Etc.  

7. Will you be following the ARRIVE or GSP guidelines? 
If so, keep in mind that every aspect of the experiment, from design to writing the article, must 
meet the guidelines. 

8. How will the data ultimately be displayed in a database? 
Every animal is given a unique code. This code must appear in the database. Sensitive 
information about an animal must be in a separate file that is only accessible to a very limited 
group of the people involved. All data is stored in the database, even data not being used in the 
statistical analysis. The structure of the data file will be determined by the statistical analysis. The 
standard is 1 line per animal, with the information about it in the columns. This means not only 
the information about the individual animal (breed, weight, age etc.) as well as the treatment, 
time of measurement, the measurements themselves, etc. Keep a code book for the database 
and keep it up to date, so that everyone can know exactly how data should be input.  

9. What results do you intend to present in the article, and how? 
It can be very frustrating if after all you cannot present particular results that are interesting or 
important, because you weren’t thinking about them when planning the experiment or did not 
measure for them.  

10. Do you have the statistical skills to be able to understand and defend the analyses? 
Familiarise yourself with the basic principles and concepts of the statistical analyses you will be 
using. This includes learning how to use the statistical software.  

Tip: keep a logbook, in which you not only can find but justify all the choices and agreements you 
have made.  Don’t hesitate to stop by and ask the animal welfare officer and/or statistician for 
advice, even if it’s only to check something.  

III. Designing animal experiments  

Research question  
The foundation of any experiment or series of experiments using animals is one or more research 
questions. The research questions are formulated on the basis of existing or new theories, or as a 
continuation of previous research. Usually there are 1 or 2 main or ‘primary’ research questions, and 
in addition, less important but still interesting research questions (‘secondary’ research questions). 
Properly formulating the research questions is essential for the success of an experiment. The 
research question must neither be too vague, nor too many detailed. It is better to have a series of 
simple research questions than one question with a lot of complicated ones. 

The primary research question often contains the essence of the research question, and will involve 
the most important measurement. The secondary research questions will be related to the other 
measurements, or are refinements of the primary research question. The primary research question 
is the basis for the power analysis. 
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Design 
The term design means the way in which the experiment is set up. The design is primarily determined 
by the primary research question, but takes the secondary research questions into account. The 
research question is further operationalised in the design. It is thus essential to formulate the 
research questions clearly and unambiguously.  

After you have thought thoroughly over the research questions, it is now important to think about 
the setup of the animal experiments. What treatments (experimental conditions) will you be 
comparing? Will you be using 2 or more independent groups (a parallel or unpaired design) or 
dependent groups (a paired or matched design)? What type(s) of data will be measured and how will 
you measure it/them? What is possible in practice? How many animals will you need, and what 
requirements must they satisfy? Will the animals survive the experiment, and if so, will they be 
suitable for use in other experiments?    

It’s important to think about the statistical analysis when designing the experiment. A minor change 
to the design can improve the statistical analysis. On the other hand, a statistical analysis also sets 
requirements for the design. 

Paired or unpaired  
In an unpaired design the animals are linked at random to an experimental condition (treatment). In 
a paired design, animals who are often from the same litter are distributed at random over the 
treatments, or animals are measured at various points over time (repeated measurements). The 
simplest form of the latter is measuring before and after a procedure. One specific form of paired 
data is when animals are matched to each other on the basis of characteristics. Paired or matched 
animals are also called a pair. 

The advantage of paired groups is that the statistical analysis can correct for the differences between 
the animals (biological variability), and thus you will need fewer animals. However, it must be 
practically feasible, and of course it must be ethically responsible. 

Control groups 
To determine if an intervention(s), usually a particular treatment(s), have (has) an effect, the results 
are compared with a reference treatment, usually a control group or a control measurement (for the 
intervention). It is essential that the reference or control group is similar in composition and 
treatment with the experimental group(s). This is why randomisation and blinding are so important. 

Blinding and Randomisation 
In blinding, you ensure that information that refers to the designated treatments remains 
confidential for all interested parties in the experiment, who otherwise could be influenced 
consciously or unconsciously by this information. 

Randomisation ensures that animals are assigned completely randomly to a treatment. One 
commonly used controlled method of randomisation is a random assignment. Every animal has the 
same probability of being assigned to a treatment. In a paired design, you randomise within each 
pair, so that all treatments are represented in one pair. A randomisation plan is drawn up 
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beforehand, so that it is clear during the experiment what treatment any new animals will be 
assigned. This prevents certain animals being assigned to a particular treatment. The best way is if 
the animals are not assigned to a particular condition by the researcher him- or herself, but ‘blindly’, 
by an in dependent person. An obvious choice is the person who takes care of the animals. It is 
necessary to check afterwards to test whether the randomisation plan was followed in making this 
assignment. 

Blinding and randomisation are essential because they prevent any influences that may, consciously 
or unconsciously, distort your experiment. 

Bias 
With bias, your results are distorted, for example, because a structurally too high or too low value is 
measured. This mainly affects subjective parameters, but must certainly not be ignored in 
supposedly objective measurements. It is thus a good idea to check all the measuring instruments for 
possible bias beforehand. Trainings and clear agreements about the subjective parameters with 
those who will be making the measurements are definitely a part of the process.   

IV. Statistical Analysis plan 
When you are setting up experiments with animals, you must think about how you will ultimately 
analyse your data. This is written up in the statistical analysis plan. Not only do the research question 
and the design determine the statistical analysis, but the statistical analysis also sets requirements 
for the design. Each statistical analysis gives estimates of the effects of a statistical test as well as the 
results. 

Outcome variable 
The outcome variable is the variable that reflects the outcome of a measurement or observation. 
They are used to describe and analyse the results of the experiment. A distinction can be made 
between primary and secondary outcome variables.  

Continuous variable 
If the measurement or observation is a real number (e.g. length, weight, blood pressure), then the 
outcome variable is said to be continuous. Most basic statistical analysis (e.g. ANOVA, t-tests, 
correlation/regression) assumes that a continuous variable has a normal distribution.  

Discrete variable 
If the data consist of categorical values, these are also known as discrete variables. A discrete 
variable can be binary (pregnant or not pregnant, dead or living), nominal (blood type, fur colour) or 
ordinal (hairless, little coat, moderate coat, healthy coat, thick coat). In contrast to a nominal 
variable, the possible outcomes of an ordinal variable have a logical order.  

Counts are a special kind of an outcome variable. In principle, they are not continuous but if the 
range of the possible counts is large, then they are considered continuous. Whether a count is 
considered a discrete or/ continuous variable is arbitrary and depends on the experiment. 
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For various reasons, there is sometimes a desire to transform continuous variables into categorical 
variables (e.g. ‘age in years’ becomes ‘young, adult or old’). This is not a bad thing in itself, if you 
have kept this in mind when formulating your research question and designing the experiment. In 
any case, it will cause information loss and consequently loss of power. 

Normal distribution 
The standard parametric statistical tests (e.g. ANOVA, t-test, correlation/regression) assume a 
continuous variable with a normal distribution. A normal distribution means that all the measured 
data are distributed along an axis in a bell-like shape, or ‘bell curve’. Most of the data lie around the 
average (mean) measurement, and the further away from the mean, the fewer values there are. 

There is a misconception that the data must be normally distributed. Actually, in most standard 
statistical analysis the requirement is that the residual values have a normal distribution. In everyday 
practice, with the t-test and ANOVA, each group is checked to see if its data are normally distributed. 
It should be clear that this has less power than seeing whether the overall residual values of all 
groups together are normally distributed.  

Most statistical programmes provide an option with a parametric statistical test to determine 
whether the residual values are normally distributed. Parametric statistical tests are robust. That 
means that minor deviations from normal distributions have no effect on the test. 

If a continuous variable is not normally distributed, then the measurement may be transformed (e.g. 
the logarithm or root) or non-parametric statistical techniques may be used (e.g. Mann-Whitney, 
Kruskal-Wallis, Spearman rank correlation). It is a misunderstanding to suppose that non-parametric 
test has no other requirements. The Mann-Whitney and Kruskal-Wallis tests also have the condition 
that the shapes of the distributions of the various groups are the same, and the Wilcoxon signed-rank 
test requires that the distribution of the differences is symmetrical.  

Besides the normal distribution, every statistical test has other requirements. The most important of 
these are independency of the measurements and homogeneity of the variances.  

Statistical analysis 
In statistical analysis, there is testing for expected effects, as well as describing possible associations. 
In the first case, you can think of comparing averages and proportions. If we speak of associations, 
then we usually are thinking of connections between 2 or more categorical variables (e.g. chi-square 
test or log-linear model) or between 2 or more continuous variables (e.g. correlation and (possibly 
multiple) linear regression). Survival statistics and (possibly multiple) logistic regression are examples 
of a mix of continuous and categorical variables. 

Testing is an important element of both testing effects and for modelling associations. 

Null hypothesis and alternative hypothesis in a statistical test 
In terms of statistics, the null hypothesis expresses in an exact and quantitative form, what you do 
not expect as the outcome of your experiment. Thus, the null hypothesis must be formulated such 
that it can be rejected or not with the parameters from your experiment. In short, the null hypothesis 
is that there is no effect. The alternative hypothesis is that there is an effect.  
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The testing procedure is that, assuming that the null hypothesis is true, you attempt to make it 
plausible that the null hypothesis cannot be true on the basis of the data. This is comparable to a 
court case in which the assumption is that the defendant is innocent and must then be proven guilty 
with evidence.  

If the null hypothesis cannot be rejected, you can conclude that the expected effect has not been 
found, or at least has not been demonstrated. In a court case, this would mean that there has been 
insufficient evidence to declare the defendant guilty. However, this does not mean that the null 
hypothesis has been confirmed and that there is no effect: a defendant who has not been found 
guilty is not necessarily innocent.  

If the null hypothesis can be rejected, you can assume that the alternative hypothesis is true (‘there 
is an effect’).  

Depending on the research question, the effect can involve the difference between 2 or more 
averages or proportions, but also something like the relationship between 2 or more measured 
outcome variables.  The result of testing the effects is often expressed as: statistically significant (null 
hypothesis rejected) or not statistically significant (null hypothesis not rejected). In addition to the 
statistical significance, there is another aspect that is often ignored or underestimated, namely 
relevance (including clinical relevance). A found effect can be statistically significant, but not relevant 
for everyday practice. On the other hand, an effect may not be statistically significant, but it will be 
clinically relevant given its size. 

When publishing the results of the experiments, it is thus essential to, addition to stating the p-value 
(for the benefit of statistical significance) to state the size of the effect with a confidence interval (for 
the benefit of clinical or other relevance). 

Up to now, we have assumed that the aim of the experiment was: to demonstrate that there is an 
effect. However, you may instead be aiming to demonstrate that there is no effect. Otherwise, the 
principle remains the same, except that now the null hypothesis is that there is an effect and the 
data must furnish the evidence that the effect is negligible. These kinds of designs are also called bio- 
equivalence studies. As a rule, they require many more (laboratory) animals.  

Introduction to testing theory 
The principle of testing is to see if there is sufficient evidence that a given supposition (‘there is an 
effect’) is demonstrable. The basic assumption (the null hypothesis) is precisely what you hope not to 
find, i.e. ‘there is no effect’. However, there is uncertainty about the real situation, since only a 
limited number of data are being collected (random sampling). Thus, chance may be causing the 
difference between the collected data and the null hypothesis. If the probability of it being chance is 
too small, then chance is seen as improbable, something we call a significant result: the null 
hypothesis is rejected. 

Two kinds of errors can be made in testing:  
1. The null hypothesis is erroneously rejected (an innocent person is declared guilty), which is 

called a type I error. The probability of a type I error is indicated with α. This error is also called 
the unrealibility of the test. 



 

Guide to experiment design and statistics Version 1.1 - 2017 Page 9   

2. The null hypothesis is erroneously not rejected (a guilty person is declared innocent). This is 
called a type II error, and the probability of it is indicated with ß. 

The probability that the null hypothesis is being rightly rejected (a guilty person is found guilty) is 
called the power. The power is usually indicated with Π (= 1- ß). 

Figure 1: Overview of type I/II errors and power 

The following steps are taken when conducting a test: 
1. Formulate the null hypothesis and the alternative hypothesis.  
2. Choose the desired significance level of the test. Usually α is 5%. 
3. A different α can be chosen, e.g. in risky research α = 1% or in exploratory research α = 10%. 
4. Determine the test statistic and its distribution under the null hypothesis. 
5. Calculate the outcome of the test statistic. 
6. Determine its p-value, or the critical value, or the (1-α)*100% confidence interval. 
7. Reject the null hypothesis if 

a. the p-value is less than α, or 
b. the test statistic is greater than the critical value, or 
c. the value under the null hypothesis is not in the confidence interval. 

8. Formulate your conclusion, always in terms of the context of the research and never with 
statistical jargon. 

Remember that the desired power is not important when testing the null hypothesis. 

one- or two-tailed testing  
If you can expect with great certainty that the effect can only go in one direction (e.g. painkillers will 
not make the pain worse) you can consider making the test one-tailed. This can mean that you need 
fewer animals to be able to confirm your alternative hypothesis. 

However, if it turns out in practice that the effect is actually going in the other direction, then you 
have not thoroughly thought through the experiment, and moreover, you have to conclude that, 
regardless of the size of the effect, the null hypothesis cannot be rejected. Thus, only use a one-tailed 
test if you are absolutely certain that the effect can only go in one direction. Deciding afterwards to 
carry out a two-tailed test or, even worse, a one-tailed test in the other direction, is not permitted. 
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Power 
Power is used to indicate the probability that the null hypothesis is correctly rejected, or to use the 
example of the court case, that a guilty person is indeed declared guilty. The power is indicated in a 
formula with: П=1-β, in which β stands for the probability of a type II error. 

Schematic diagram of basic statistical analyses 
Depending on the research question and the design of the experiment, there is a wide range of 
possible statistical techniques available to you. The standard statistical techniques are shown as a 
schematic diagram in the figure below. Remember, however, that the range of possible statistical 
techniques is much greater. There are also survival statistics, repeated measurements, multi-way 
ANOVA or ANOVA for paired data, techniques for hierarchical structures (Multi level), etc.  
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Determining sample size  
One important element of the design is the number of laboratory animals it requires. The goal is to 
find a balance between not too many animals (ethically and economically undesirable, legally 
prevented), and not too few animals (predictive value and power too low). You can determine this 
optimum number using the power analysis. 

Power analysis 
There are two points in the research where it can be worthwhile to perform a power analysis: 
1. Before starting the study. 

At this point the goal is to find the optimum between a not too-large and a not too-small 
sample, as mentioned above. 

2. After completing the study. 
At this point the important things are recognising if the power is too low, and being able to 
make a distinction between statistical significance and the size of a (possibly clinically relevant) 
effect or strength of relationship. This is only interesting if a clinically relevant effect has been 
found, but was not statistically significant. 

Factors that determine the power are 1) design of the research; 2) one- or two-tailed test; 3) unreli–
abil–ity of the test (α); 4) effect size (δ); 5) size of the variability or standard deviation (σ) and 6) 
sample size (n). These factors are shown in the illustration below (note that the standard error is a 
func–tion of σ and n). In general, it can be said that the power increases as the effect increases, the 
significance level  increases, the variability decreases or the size of the sample increases (see 
figure 2). 

Figure 2: Overview of the factors determining the power  

You will need to know the following to determine the minimum number of animals required:  
1. what statistical analysis will be conducted (in other words, what is the design);  
2. one-or two-tailed testing;  
3. probability of a type I error (α);  
4. desired power (Π);  
5. minimum relevant or expected effect (δ) and  
6. expected variability or standard deviation (σ) 

H0
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Power
Π

αß

Effect δ

SE
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Choosing the size of the minimum relevant effect 
The biggest problem is often determining the minimum relevant or expected effect and the expected 
distribution. One aspect that helps to determine the minimum relevant effect is the limit at which an 
effect is no longer practically interesting or relevant (clinical relevance). To get an indication of the 
expected distribution you can refer to a pilot study, literature study or general knowledge.  

However, to determine the minimum sample size, it is not important to know the effect and the 
distribution themselves, but their relationship. This relationship is called the effect size (= ES). To 
calculate a sample size for the unpaired t-test, for example, the ES is defined as ES = δ/σ = (u1-u2)/sd. 
In some literature (such as the handbook by Van Zutphen) percentages are used to indicate the 
expected effect and expected variability. This is not important in and of itself, but with absolute 
values, the effect is much more easily quantifiable in the original scale. An effect of 10% means 
nothing if it is not known what that 10% is related to.  

1. Van Zutphen: Effect size (ES) = effect / CV = {(u1-u0)/u0} / {sd/u0} with u0 is mean in control group 
and u1 mean in treatment group, sd is the (pooled) standard deviation per group and CV is 
variance coefficient or the sd expressed as percentage of the mean. 

2. Standard literature: Effect size (ES) = difference in means / sd = (u1-u0) / sd with u0 is mean in 
control group and u1 mean in treatment group and sd is the (pooled) standard deviation per 
group.  

It may be that you have absolutely no idea what your minimum relevant effect is or what the 
expected variability can be. In this case, you can resort to the Cohen’s effect size measures, although 
it is recommended that you avoid them if possible.  

What if minimum sample size is not practically feasible? 
The calculated minimum required number of animals may turn out to be difficult to work with in 
practice. If it only involves the number of animals, you can try to solve it by modifying the settings of 
the power analysis or your design. If the problem is not the number of animals, but that not all 
measurements can be made in one day, it can be done over several days. Remember that this will 
have consequences for your design, your statistical analysis and your power analysis. We recommend 
that you consult with a statistician and/or animal welfare officer.  

How do you determine the sample size? 

Software 
There are several programmes that can perform a power analysis and calculate sample size. The best 
known of them are nQuery, PASS, G*Power and PS. The last 2 can be downloaded free of charge 
from the internet. There are also numerous sites that can determine the power or sample size for 
particular statistical techniques. Check first if the calculations from these sites are correct.  

The minimum required number of animals can also be determined by the ‘pwr’ package from R.  
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Calculating sample size manually  
In simple statistical analysis, the minimum number of animals required can also be calculated 
manually, with met β = 1-power. 

 Input To calculate sample size (n) 

1 mean sd(σ), effect(δ) n = σ2

δ2
�z1−α/2 + z1−β�

2
  

round n up  
df = n-1, with df = degrees of freedom 

n =
σ2

δ2 �
t1−α/2;df + t1−β;df�

2
 

repeat steps 2 t/m 4 until n no longer changes  

1 probability P0 and P1 
(probabilities 
under the null 
hypothesis and 
alternative 
hypothesis) 

n ≥
�Zα�p0(1− p0) + Zβ�p1(1− p1)�

2

(p1 − p0)2  

2 means 
(unpaired) 

sd(σ), effect(δ) n = 2 σ2

δ2
�z1−α/2 + z1−β�

2
  

round n up  
df = n-1 

n = 2
σ2

δ2 �
t1−α/2;df + t1−β;df�

2
 

repeat steps 2 t/m 4 until n no longer changes  

2 probabilities 
(unpaired) 

pC = the 
probability in de 
control group,  
pE = the 
probability in the 
treatment group, 
δ0=pE-pC 

n ≥ pC(1−pC)+pE(1−pE)
δ02

�Zα + Zβ�
2

  

With zp the z-value under the standard normal distribution in which Pr(Z<z-value)=p  and analogue tp;df the t-
value under the t-distribution with degrees of freedom df  Pr(T<t-value)=p.  For example, if α=5% then 𝑧𝑧1−.05/2 =  
1.96. 

Power analysis in 1-way ANOVA theory 
The best statistical analysis for comparing the means of ‘k’ conditions is the 1-way ANOVA. The 
principle of the 1-way ANOVA is that it tests if there is even a difference at all between the k 
conditions. The null hypothesis is then ‘there is no effect between the k conditions’. If this null 
hypothesis is rejected, it can be concluded that the means differ from each other for at least 2 
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conditions. An interesting logical question is then for which 2 this is the case. To answer this 
question, there are post-hoc tests. 

Most post-hoc tests are geared to pair-wise comparisons of conditions, but it is also possible to 
compare means of subsets (whether or not with weightings) of conditions. In this latter case, 
however, we speak of contrasts rather than post-hoc tests, but in fact they are special kinds of post-
hoc tests. Most post-hoc tests can be roughly described as modified versions of the unpaired t-test.  

With k conditions, there are at most k*(k-1)/2 possible pairwise comparisons, each with an 
unreliability of 5% (α). This means that the probability is greater than 5% that for at least 1 of all 
these pairwise comparisons, the null hypothesis will be erroneously rejected. If you perform all the 
possible pairwise comparisons, then this probability is at most 5*k*(k-1)/2. The actual probability 
partly depends on the dependence between the post-hoc tests and the post-hoc test used. To 
maintain the overall unrealibility at 5% the significance levels with the post-hoc tests are modified, in 
other words lowered. However, lowering the probability of a type I error increases the probability of 
a type II error, and thus the power is reduced (see figure 1). 

Over the years, dozens of post-hoc tests have been developed that attempted to keep the overall 
unrealibility at 5% with as little loss of power as possible. Almost all post-hoc tests, except for the LSD 
test, are corrected in some way for the number of post-hoc tests. Increasing knowledge has shown 
however that some of these post-hoc tests are still available in many kinds of statistical software, but 
it is better not to use them. In everyday practice, the most commonly used are the Tukey (if all 
comparisons are pairwise), Dunnett (only comparison with a reference group) and Bonferroni (if a 
selection of pairwise comparisons and/or contrasts is limited). Of course, the choice is also 
determined by which post-hoc test is commonly used in the research field.   

The post-hoc tests in an ANOVA analysis can be approached in several ways:  
1. Theoretical: exactly according to the theory. Even the significance level bias is modified 

completely in accordance with the theory: the modified significance level becomes 
α/(k*(k-1)7/2). This can result in extremely low modified significance level. 

2. Practical: exactly according to the theory, but keeping in mind the fact that the bias must be 
modified, while simultaneously a maintaining a lower limit for the significance level. For 
example: regardless of the number of post-hoc tests maintaining a modified significance level of 
1%.  

3. No correction: without modifying the significance level, because the post-hoc tests are a 
separate issue.  

4. No overall ANOVA: the overall ANOVA is not conducted. You immediately conduct the post-hoc 
tests, and even use the regular unpaired t-test, with or without correction of the significance 
level.  

The practical method seems the obvious one, especially if you are comparing many conditions. 
Remember that each approach has its own consequences for the test results and for the power. 
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Power analysis with 1-way ANOVA in practice  
Most articles about calculating sample sizes deal with the primary research question ‘Is there an 
effect between the k conditions’, in other words the overall ANOVA. But what if the post-hoc tests 
are the primary research questions? 

We know that most post-hoc tests maintain the overall bias at 5%, but that there is some loss of 
power. To retain the desired power for the post-hoc tests, the bias (α) must also be modified when 
determining the minimum sample size, so that the sample size becomes somewhat larger.  

To sum up, the researcher has three options: 
1. If the primary research question is ‘is there a difference between the k conditions’, then the 

sample size should be determined based on the overall ANOVA analysis. The post-hoc tests are 
then only secondary research questions or are considered a nice ‘extra’ that is interesting for the 
test but not for the power. 

2. However, if your primary research questions are focused on the ‘difference between given 
conditions’, then the minimum sample size determination can be based on an unpaired t-test 
with as distribution the pooled distribution of all conditions and  
a. without a modified significance level 
b. with a modified significance level 

Note: this assumes the Bonferroni post-hoc test is used.  

If we apply this to the example above, then the minimum sample size in option 1 is n=3, for option 2a 
n=11 and for option 2b n=15. The choice between 2a and 2b is a weighing of the size of the sample 
and loss of power. It is a tricky decision, in which loss of power is also determined for the choice of 
the number of post-hoc tests, as well as the actual effect size.  

V. To conclude 
This guide was written for the average researcher with a basic knowledge of statistics. The underlying 
theories can be found in basic statistics textbooks, Wikipedia or the references below.  

Example: Researchers are aiming to demonstrate an effect size of ES = 1.5 (this was the 
smallest expected effect size of the 4 specific post hoc tests) with a power of 90%. For 
their research, they are only interested in 4 specific post-hoc tests. For their post-hoc test 
they opt for the Bonferroni method with α=5/4%=1.25%.   

If they had not modified the bias when determining the minimum sample size, then n 
would have been n=11. However, in the analysis this would have resulted in a power of 
77% and thus a loss of 13% with the same effect size. If they had also chosen the modified 
significance level α=1.25% when determining the minimum sample size, then n would 
have been n=15 with no loss of power. 
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VI. More Information 

Websites 
You can read a lot about the subjects above on the following website:  www.3Rs-reduction.co.uk. 
The site also allows you to self-test your knowledge. 

Literature  
Amor, S., Baker, D., (2012) Checklist for reporting and reviewing studies of experimental animal 
models of multiple sclerosis and related disorders. Mult Scler Relat Disord. 1(3)  
An article with a complete list of the information you should provide when you present your results 
in a scientific journal. Although the focus is op MS, the information is suitable for other fields as well. 

Lara-Pezzi, E et al., (2015) Guidelines for Translational Research in Heart Failure. J. of Cardiovasc. 
Trans. Res. 8(1) 
An article with a main focus on the translation of models for heart failure in animals and effective 
suggestions for designing similar studies. The focus is on heart failure, but the information is suitable 
for other fields as well. 

Steward, O., Balice-Gordon, R. (2014) Rigor or mortis: best practices for preclinical research in 
neuroscience. Neuron. 84(3) 
This article discusses best practices in experimental design and statistics in preclinical studies of 
neurological and psychiatric disorders. There is also some focus on data management. The focus of 
the article is on neurological and psychiatric disorders, but the information is suitable for other fields 
as well. 

Festing, M. F. W., Altman, D.G., (2002) Guidelines for the Design and Statistical Analysis of 
Experiments Using Laboratory Animals. ILAR 43(4) 
This article helps you answer your research question with various types of experiments, step by step. 
It provides ways to prevent errors and to get meaningful data. It is especially oriented to the use of 
animals in research and emphasises the 3R’s and sound statistical analysis. 

Aban, I.B., George, B., (2015) Statistical considerations for preclinical studies, Exp. Neurol. 270 
This article discusses statistical terms with the goal of improving the quality of animal studies. This 
article was written especially for people using animals in preclinical studies so that the data are 
suitable as preparation for the clinical phase of research.  

Hirst, J.A., et al. (2014) The Need for Randomization in Animal Trials: An Overview of Systematic 
Reviews. PLoS ONE 9(6) 
This article demonstrates using a meta analysis how important it is to conduct randomised animal 
studies, with blind assignment of interventions, and conducted blind.  

Tweel, I. van der (2006) Sample size determination. Intern Report no. 4 
(http://portal.juliuscentrum.nl/Portals/2/Disciplines/Biostatistics/SAMPLE%20SIZE%20DETERMINATI
ON_electronic%20version.pdf) 
This report explains the simplest sample size calculation.  
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http://portal.juliuscentrum.nl/Portals/2/Disciplines/Biostatistics/SAMPLE%20SIZE%20DETERMINATION_electronic%20version.pdf
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Bate, S.T. & R.A. Clark, (2014) The design and statistical analysis of animal experiments, Cambridge 
University Press 
This book discusses many aspects of setting up and analysing animal experiments.  
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